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Abstract

Nonlinear models for pattern evolution by ion beam sputtering on a material surface present an ongoing
oportunity for new numerical simulations. A numerical analysis of the evolution of preexisting patterns is
proposed to investigate surface dynamics, based on a 2D anisotropic damped Kuramoto-Sivashinsky equa-
tion, with periodic boundary conditions. A finite-difference semi-implicit time splitting scheme is employed
on the discretization of the governing equation. Simulations were conducted with realistic coefficients related
to physical parameters (anisotropies, beam orientation, diffusion). The stability of the numerical scheme is
analyzed with time step and grid spacing tests for the pattern evolution, and the Method of Manufactured
Solutions has been used to verify the proposed scheme. Ripples and hexagonal patterns were obtained from
a monomodal initial condition for certain values of the damping coefficient, while spatiotemporal chaos
appeared for lower values. The anisotropy effects on pattern formation were studied, varying the angle of
incidence of the ion beam with respect to the irradiated surface. Analytical discussions are based on linear
and weakly nonlinear analysis.
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1. Introduction

The present endeavor is interested in the spontaneous well-ordered periodicity developed by ion beam
sputtering (IBS), which appears over a broad surface area under certain conditions [1]. Sputtering can be
described as the ejection of atoms from a solid surface, as a result of energetic particle incidence. Among other
contemporary techniques in materials science, sputtering operates in nonequilibrium conditions, allowing the5

processing of nano-structures beyond the limitations imposed by equilibrium thermodynamics. Modeling the
nonlinear evolution of sputter-eroded surfaces is an ongoing mechanical challenge. Our effort aims toward
the development of a numerical scheme to solve an anisotropic Kuramoto-Sivashisnky equation with realistic
coefficients, since it produces a rich zoology that can be adjusted to represent the aforementioned erosion
dynamics.10

When the ion reaches the surface with a certain level of energy, a train of collision events may be es-
tablished, resulting in the removal of atoms from that solid surface. The morphology of such surface can
drastically change due to these sputtered atoms, and it might result in the formation of unexpectedly or-
ganized patterns, such as ripples, nanodots and hexagonal arrays of nanoholes (see Refs. [2, 3] for more
details). Valbusa et al. [4] discussed the interplay between ion erosion and vacancies on the surface reorga-15

nization, which would explain some of the patterns experimentally detected. The rate of energy deposition
is a crucial parameter for the mechanisms, since high values can lead to a local transient melting of the
surface [5], alongside the possibility of ion implantation.
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The Kuramoto-Sivashinsky equation appears from the continuum theories, in their attempt to describe
surfaces eroded by ion bombardment, which would ultimately reproduce ripple formation and other organized20

patterns behavior. This equation was initially formulated to describe flame fronts and chemical waves
[6], being capable of producing a great variety of morphologies for its highly nonlinear and deterministic
character. Later it became a paradigm for pattern formation and spatiotemporal chaos, with a number of
works devoted to it. Rost and Krug [7] describe the equation as being remarkable for the stabilization of the
linear instability by the nonlinear term. This stabilization makes the equation a good candidate to represent25

the complexity behind the structure formation on sputtered surfaces, with a dynamic transiting between
different regimes.

The isotropic damped Kuramoto-Sivashinsky (DKS) was previously studied by Paniconi and Elder [24].
They numerically integrated the 2D equation through Euler’s method (explicit) with a time step ∆t = 0.035,
since their aim was at a late-time long-aspect-ratio limit. For the spatial discretization with ∆x = 1.0, a30

midpoint rule was adopted for the first order derivatives, and a stencil was used for the isotropic discrete
Laplacian. Results obtained when changing the damping coefficient were analyzed, but the model was not
physically linked to any particular phenomenon. Facsko et al. [14] became interested in the 2D isotropic
DKS due to its stationary solutions showing a remarkable resemblance to IBS patterns. They connected
these solutions to the hexagonal patterns found on a GaSb(100) surface after ion erosion. In terms of35

numerics, they also used Euler’s method for time integration and spatially discretized the Laplace operator
through eight nearest neighbors, and the spatial and time steps where ∆x = 1.0 and ∆t = 0.01.

Here we perform a numerical study of patterning by IBS through a model that corresponds to a DKS
equation for an anisotropic system with realistic coefficients. Our proposed model is close to a previous
expansion of the Bradley and Harper theory performed by Makeev et al. [6], and also to the form found in40

Facsko and Keller [13], but contains terms to account for various anisotropies and adopts some simplifications
(as isotropic energy distribution for the atomic cascade). Since the equation is very sensitive to its parameters
value, there is still much to be explored when it comes to its behavior in 2D, especially when working in
the range of physical experimental data. Our goal is to understand the evolution of a material surface
displaying a preexisting pattern under IBS through this model. We look into the growth and competition45

between modes for different initial patterns, which are compared with analytical results from a developed
linear and weakly nonlinear analysis. Also, we study the connection between the beam angle and the
relative anisotropy found on the patterns, and provide an insight on the role of the damping term under our
particular model and coefficients. This way, we introduce tools and a new way to interpret experimental
results, from ripples to coarsening in the nonlinear regime.50

Stability requirements impose restrictive limitations to the time step on explicit schemes, especially in
the presence of fourth-order derivatives. At the same time, implementation of straight implicit schemes
for 2 or more dimensions leads to a large system of linear equations, which might not be a suitable cost-
efficient option. Therefore, in Sec. 2 we propose a finite-difference semi-implicit splitting scheme of second
order in time and space to numerically solve this anisotropic DKS equation subjected to periodic boundary55

conditions. The computational domain is a two dimensional surface characterized by a height function
h(x, y, t), whose evolution in time is monitored. Internal iterations are used inside each time step to enhance
the approximation of the nonlinear term.

Previously, a similar numerical scheme has been successfully implemented for Swift-Hohenberg [8, 9],
which is a fourth-order parabolic equation, dealing with the same challenges of high-order spatial derivatives60

and nonlinearity. The coordinate splitting, alongside the half-time steps (with only one of the operators
implemented explicitly), were proven to be an effective approach for such equation, combining desirable
stability properties with efficient computational costs. We show that this is also true for our case, such that
the scheme remains stable for time steps much larger than the reported ones for explicit methods.

Section 3 deals with a linear analysis to study the system’s response to small perturbations, followed by65

a weakly nonlinear analysis in Sec. 4. The numerical scheme is verified by the Method of Manufactured
Solutions (MMS) in Sec. 5, and its stability is analyzed in Sec. 6 with time step and grid spacing tests for
the pattern evolution. Preexisting structures are employed as initial conditions, varying from a monomodal
to a random initial pattern.

We then further discuss how the realistic coefficients fit in the model in Section 7, where simulation70
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results are shown for a high temperature case. In such system, sputtering terms and diffusion act on similar
scale, and should agree with our qualitative analysis for pattern selection. There, we study the circumstances
under which hexagonal patterns emerge, and how the damping coefficient α relates to the organizational
degree of the structure (even for spatiotemporal chaos). Finally, we analyze the effects of variations of the
angle of incidence of the beam θ, and also a scenario where the nonlinear terms compensate each other.75

2. Mathematical Modelling and Numerical Scheme

2.1. Governing Equation

In order to solve the anisotropic DKS equation which emerges from the IBS modelling [4, 6, 10, 11, 12],
a second order in time finite difference numerical scheme is proposed. The general model takes into account
realistic coefficients corresponding to anisotropies, diffusion, beam orientation and others. For the case of80

isotropic energy distribution, considering an ion beam with angle of incidence θ with respect to the normal
of the surface (θ = 0 for normal incidence), the evolution of the surface height h is governed by:
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2πη

exp

(
−a2ηc2

2

)
, where J is the flux of bombarding ions, ε is the energy carried by the ions,

p is associated to the surface binding energy and scattering cross-section, a is the penetration depth, and η
is the width of energy distribution. The parameter K takes into account the surface diffusion effects, which85

vary with temperature. In terms of realistic values, ε lies between 0.1 and 100 keV, while some examples
for the others are: J ≈ 1015cm−2s−1, p ≈ 2, a ≈ 2 nm, η ≈ 0.5 nm, and K ≈ 34 × 10−28cm4s−1 [6, 13].
Additionally, c and s represent the cosine and sine of θ, and aη is the ratio a/η. In standard form, the
equation reads:
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where h̄ and τ are, respectively, the dimensionless surface height function of the external atom layer and90

the time dependency of the transient model, with X and Y as the domain space coordinates. They relate

to their dimensional counterpart via: h̄ =
a2η
a h, X =

2aη
a x (similarly for Y), τ =

2Fa2η
a t, α = a

2Fa2η
αo,

and K̄ =
8a2η
Fa3K. Equation 2 presents a damping term −α h̄ , with α being a positive damping coefficient,

which was initially proposed as a contribution of the redeposition mechanism to the formation of nanodots
[14]. However, Bradley [15] demonstrated that the redeposition of sputtered material is a nonlinear effect95

observed in pattern formation by IBS, discarding the influence of this physical mechanism on the appearance
of hexagonal ordered structures. Nevertheless, we maintain our interest in the linear damping term for the
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sake of producing stable patterns and supressing the emergence of chaos . Finally, the parameters µ, ν̄x, ν̄y,
DXX and DXY will be defined as follows (see Makeev et al. [6] for further details):
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These parameters are responsible for introducing various types of anisotropies. Now, in order to solve100

Eq. 2, the following second order in time Crank-Nicolson semi-implicit scheme was adopted:
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The superscript (n + 1) refers to the current time and (n) to the previous one. The operators ΛX , ΛY
(both modified from Eq. 3 to account for the division by two) and the function f n+1/2 are defined as:
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2.2. Internal Iterations

Internal iterations at each time step are required to secure the approximation for the nonlinearities taking105

part in the scheme of Eq. 3. The iterations loop will continue until the L∞ norm points that the convergence
was attained. There is a trade-off related to the time step ∆τ : for a larger ∆τ , convergence will be impaired
and the number of internal iterations will increase, while a smaller ∆τ will impact on a smaller number of
iterations, but it will imply on a greater number of time steps. The internal iterations scheme reads:

h̄ n,m+1 − h̄ n
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)
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where the index (m) refers to the internal iteration number. The superscript (n,m + 1) identifies the new110

iteration, while (n) are the values of the previous time step. The superscript (n+ 1) for the nonlinear term
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in the function fn+1/2 will be replaced by (n,m), which stands for the values obtained from the previous
iteration. The iterations proceed until the following criterion for the L∞ norm is satisfied:

L∞ =
max

∣∣h̄ n,m+1 − h̄ n,m
∣∣

max
∣∣h̄ n,m+1

∣∣ < 10−7 (5)

for a fixed current time (n). The function h̄ n+1 for the new time will be acquired from h̄ n,m+1, as soon as
the criterion of convergence is satisfied.115

2.3. The Splitting Scheme

The splitting of Eq. 3 is made according to the second Douglas scheme [16, 17]. Such strategy has been
chosen to deal with the costly procedure of solving Eq. 3; even though we are working with sparse matrices
for the operators, the internal iterations cause the process to be repeated several times during each time
step. This problem welcomes an attempt to minimize the operations per unit iteration, as follows:120
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Here, ˜̄h is the height function for the intermediary time step. Equation 6 can be solved line by line and
Eq. 7 can be solved column by column, which is one positive contribution of the splitting for the storage
and precision of the resolution. In order to show that the splitting represents the original scheme, we rewrite
Eqs. 6 and 7 in the form:
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where E is the identity operator. The intermediate variable ˜̄h is eliminated by applying the operator125

(E −∆τ ΛX) to Eq. 9, and adding the result to Eq. 8:
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A comparison with Eq. 3 shows that Eq. 10 is actually equivalent to the original one, as their temporal
order of approximation coincides. Note that the positive definite operator130

B ≡ E + ∆τ2 ΛXΛY = E +O
(

∆τ2
)

has a norm greater than one, acting on the discrete time derivative. This means that the operator B does
not change the steady state solution. Furthermore, since ‖B‖ > 1, the scheme given by Eqs. 6-7 is more
stable than the target one (Eq. 3).

2.4. The Method of Manufactured Solutions

The MMS is a code verification procedure, which analyzes if a numerical scheme and its implementation135

code stand for the task of representing the mathematical model of a physical event with sufficient accuracy.
The idea behind the MMS is to solve a problem as if the analytical solution was available from start,
creating a manufactured solution for a system of partial differential equations [18]. Considering that the
proposed function is unlikely to solve the equations exactly, a residual term will appear due to the solution
of the system. The insertion of such residue in the right-hand side of the equation as a source term leads140

to a different numerical solution, which is expected to approach the artificial analytical solution (if the
manufactured equation was properly constructed).

Since the manufactured solution is defined on the continuum, the global discretization error can be
examined by the discrete L2 norm [19]:

L2 =


N∑
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N


1/2

(11)

where N is the total number of mesh nodes, i is the index of each node, and the indexes k and e represent145

the numerical and the manufactured (“exact”) solution, respectively. Such norm analyzes how the numerical
solution approaches its corresponding analytical solution after each time step. It is indeed expected that
the error will decrease by refining the mesh.

3. Linear Stability Analysis

Linear stability analysis is employed to study the system’s behavior when submitted to small perturba-150

tions, revealing whether the initial equilibrium point is stable or not. If an exponential growth is observed,
such point is linearly unstable; on the other hand, if a exponential decay towards a steady state is found,
that point is classified as linearly stable. For small perturbations, we may eliminate the non-linear terms
from the governing equation, making the analytical analysis more straightforward. Equation 2 will take the
form:155
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Define a standard basis {~1x,~1y} for the present Cartesian coordinate system. Considering K̄ > 1, a
value of θ for |µ| > |ν| (where ν = −c2), and a perturbation from the equilibrium state h̄o, we may write
Eq. 12 in Fourier series:
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h̄ (X,Y, t) =
∑
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where ~q are the spatial modes (|q| =
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y), and στ is the growth rate (eigenvalue). The decomposition in

Fourier modes is reasonable because the basis of trigonometric functions is appropriate to periodic structures.160

Since ν is negative for any θ, and µ is negative for 0 < θ < 70.1◦, we continue with the absolute values |µ|
and |ν|. The anisotropic coefficients DXX , DXY and DY Y can be hidden for an easier manipulation of the
equation, observing that K̄ multiplies the same derivatives, as follows:

στ = −α+ |µ|q2
x + |ν|q2

y − K̄(q2
x + q2

y)2 . (13)

This is an equation for the rate of growth of the mode ~q. Consider q2 = q2
x + q2

y for Eq. 13. Also, if we

define the critical wavenumber as q2
c = |µ|/2K̄, the following expression is obtained:165

στ = (−α+ |µ|q2 − K̄q4)− (|µ| − |ν|) q2
y

= ε− K̄(q2 − q2
c )2 − (|µ| − |ν|) q2

y

where ε = µ2/4K̄−α. On decreasing α bellow µ2/4K̄, a positive ε value is obtained. From this moment on,
spatial modes with ~q = ± qc~1x become unstable, while distancing from such values we remain in the stable
domain. That is:

στ = ε− K̄(q2
x − q2

c )2 =⇒ qx ≈ qc (for a small positive ε) .

Reducing α even further, the unstable domain for ~1x modes expands. For α = ν2/4K̄ and changing

modes orientation up to ~1y, we can find that modes with ~q = ±
√
ν/2K̄ ~1y become first unstable in this170

direction. The calculation is performed as follows:
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√
ν

2K̄
.

From the previous analysis, we can conclude that for α < ν2/4K̄, modes for all orientations will become
unstable. However, it must be noticed that the maximum growth rate is limited to qc~1x , since the term
K̄(q2 − q2

c )2 acts as a wave filter.
The linear stability analysis does not take into account weakly nonlinear effects. A more robust analysis175

of the prevailing structure should consider the interactions between different modes and the nonlinearities of
the system. This coupling can be studied through amplitude equations. For the hexagonal structures, the
modes are of equal amplitude, although presenting different wavevectors in order to deal with the anisotropy
[20].
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4. Weakly nonlinear Analysis180

Based on the linear stability analysis, for α in range ν2/4K̄ ≤ α ≤ µ2/4K̄ the maximum growth rate is
associated with a ~q = qc~1x monomode pattern. Nevertheless, when we take into account nonlinear effects,
this pattern may become unstable versus structures built on modes directly coupled through quadratic
nonlinearities [21, 22]. The hexagonal modes are such that:

qc~1x + ~q2 + ~q3 = 0

where qc defines the critical circle qc = |~qi|, and ~q2 and ~q3 are defined as:185

~q2 = q2x
~1x + q2y

~1y

~q3 = q3x
~1x + q3y

~1y .

Therefore, q2x = q3x = −qc/2 and q2y = −q3y =
√

3qc/2. For critical hexagons, we propose the solution:

h̄ =
∑
n

(Ane
i n ~q1·~r +Bne

i n ~q2·~r + Cne
i n ~q3·~r + c.c.) .

Before moving to the amplitude equations, it is more straightforward to start analyzing from a critical
ripple. The unidimensional evolution equation is given by:
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where ε = µ2/4K̄ − α, and q2
c = |µ|/2K̄ (the coefficient µ is negative for the angles of incidence covered in

this work). Then, if we consider a solution of the form h = A1e
i qcx + A2e

i 2qcx + ... + c.c., the following190

results are obtained:
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(
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Hence, the amplitude equations for A1 and A2 become:
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8



For slow variations of the amplitude, the time derivative in Eq. 15 becomes small when compared to the
first two terms in the right-hand side such that we may write:

A2 ≈ q2
c ν̄xA

2
1

ε− 9 K̄q4
c

.

Hence, the amplitude A2 adiabatically follows the amplitude A1 as:195

∂A1

∂τ
= εA1 − u|A1|2A1 + ... , with u ≈ 4 ν̄2

x

9K̄
for small ε.

Now, we move back to the critical hexagons. The evolution of A1 behaves similarly to the critical ripples,
and the only difference in the equation comes from the interaction between the second and the third modes.
Note that the following terms are obtained:
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Since the same adiabatic elimination from the critical ripples applies from the critical ripples applies for
∂A2/∂τ , the amplitude equation for A1 becomes:200
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Then, the amplitude equation for B1 is obtained through the same procedure. The equations for the
first two harmonics of this second mode are :

∂B1

∂τ
= (ε− Ω)B1 + νBA

∗
1C
∗
1 + q2

c (ν̄x + 3 ν̄y)B∗1B2 + ...

∂B2

∂τ
= (ε− 4 Ω− 9 K̄q4

c )B2 −
q2
c ν̄x + 3q2

c ν̄y
4

B2
1 + ...

with Ω = 3
4 (|µ| − |ν|)q2

c and νB = q2
c ν̄x. Once again, adiabatic elimination allows us to obtain the following

relation between amplitudes:205

B2 ≈ q2
c (ν̄x + 3 ν̄y)

4 (ε− 4 Ω− 9 K̄q4
c )
B2

1 .

Hence, the amplitude equation for B1 is:
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∂B1

∂τ
= (ε− Ω)B1 + νBA

∗
1C
∗
1 − uB |B1|2B1 + ... (17)

with uB ≈
q4
c (ν̄x + 3 ν̄y)2

4 (9 K̄q4
c + 4 Ω)

for small ε .

Similarly, the amplitude equation for C1 is:

∂C1

∂τ
= (ε− Ω)C1 + νCB

∗
1A
∗
1 − uC |C1|2C1 + ... (18)

where νC = νB and uC = uB . Therefore, the resulting hexagonal patterns present a structure of the type:

h = A cos(qc x) + 2B cos

(
1

2
qc x

)
cos

(√
3

2
qc y

)
.

In case the damping α is too low, Eqs. 16-17-18 do not hold to describe the resulting behavior, since an
increasing number of harmonics may become unstable and more couples between smaller and larger scales210

will occur. However, if the damping is sufficiently high, the hexagonal structures should stabilize according
to this this weakly nonlinear analysis. For the numerical results that will be presented in the following
sections, we were able to observe such hexagonal patterns for late time, based on the previously described
triad of modes ~q1, ~q2 ,and ~q3.

5. Code Verification215

In consonance with the guidelines for the manufactured solution construction by Roache [23], an artificial
solution was developed considering spatio-temporal variations of a surface:

h̄m = ho + hxy sin

(
axπx

L

)
cos

(
ayπy

L

)
e bt . (19)

The parameter values employed in the manufactured solution and in the differential equation are pre-
sented on Table 1. Although the artificial solution does not need to be realistic for code verification, the
chosen values were coherent with the studied simulations. Besides, the manufactured solution presents a220

periodic nature, which is also the case of the posed problem. All tests were run in a quare domain with L
= 256, and a time step of ∆τ = 0.1.

Table 1: Parameter values for the MMS

MS Parameters Value KS Parameters Value

ho 0 K̄ 5

hxy 10−4 aη 4

ax 2 θ 30°
ay 2 α 0.15

b -1/200
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Figure 1: Evolution in time of the L2 norm comparing different grid spacing gs.

Figure 2: L2 norm of the surface height for the manufactured solution. First and second order error lines are also displayed
for comparison.

Figures 1 and 2 display how the spatial grid-refinement affects the global discretization error. The error
tends toward second-order convergence with respect to grid spacing gs for coarser meshes. However, as the
grid gets more refined (smaller gs), the error stands between first and second-order convergence.225

The manufactured solution was unstable for the analyzed differential equation, which grows rapidly in
time until its saturation, shadowing the contribution of the source term. For this reason, we limited the
range of analysis to a stable region for the artificial function, where the numerical solution converges to
the analytical solution. As we will later discuss, this region corresponds to a stage before the emergence of
hexagonal modes.230
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6. Scheme Stability

One important issue which concerns the simulations is the time and mesh size selection, such that we
seek reasonable choices inside the stable region of the present semi-implicit scheme. Here, we study the time
step and grid spacing variation effect regarding the pattern evolution by tracking the L1 norm evolution in
time. During the simulations, we monitored the pattern’s evolution by the L1 norm rate of change in time,235

which indicates how fast the structure is changing between the current and previous time step, normalized
by the spatial average of the surface height absolute value. This norm rate of variation is denoted as:

L1,t =
1

∆τ

∑
ij |h̄ n+1

ij − h̄ nij |∑
ij |h̄ n+1

ij |
. (20)

The computational effort was also measured, being related to the number of internal iterations when
comparing results for a same grid spacing. Two different grids were used for the stability tests, as follows:

1. Case A: ∆X = ∆Y = 2, 64×64 points in a domain 128×128240

2. Case B: ∆X = ∆Y = 1, 128×128 points in a domain 128×128

Both cases start with a monomodal initial pattern q0
~1x, presenting four wavelengths in the domain.

The critical wavelength (related to the critical wavenumber qc) is approximately 18: each of them would be
represented by 9 points for Case A and by 18 points for Case B. The parameters adopted for the tests are
displayed on Tab. 2.245

Table 2: Parameters value and description

Parameter Value Description

α 0.15 damping coefficient

K̄ 5 surface diffusion effects

θ 30° beam’s angle of incidence

aη 4 penetration depth/width of energy distribution

We assumed a pattern as stationary if the criterion L1 < 10−7 was reached for the temporal evolution. On
the other hand, the simulation would be stopped if the L1 curve demonstrated clearly a behavior converging
to a fixed value (or oscillating around it). Even though L1,t is a rate of change and not the L1 norm, we
will refer L1,t just as L1 for the sake of simplicity.

Figure 3 compares the structure evolution through the L1 norm to observe when the results would diverge250

for an increasing time step.
From Fig. 3a (Case A) we observe slight deviations in the L1 norm evolution for ∆τ = 2.0 when

comparing to inferior time steps values, while ∆τ = 5.0 diverges completely from the others. Regarding Fig.
3b (Case B), the divergence for ∆τ = 5.0 is also clear, but it’s more coherent with the smaller time steps
than Case A, as expected from a more refined mesh. This time, ∆τ = 2.0 is more consistent with the smaller255

ones, and would be accepted for the simulations. Even so, we decided to operate with up to ∆τ = 1.0 for
both ∆X = 1 and 2, which is a more conservative approach. Nevertheless, represents a significant increase
in time step (inside the stable domain) when compared to some of the aforementioned works that adopted
explicit schemes [24, 14].

7. Anisotropic DKS evolution on preexisting patterns260

Results regarding the evolution of the anisotropic DKS on preexisting patterns will be discussed next.
The simulation results were obtained with the parameters K̄, θ, aη and α as shown in Tab. 2, using a mesh
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(a) Case A: ∆X = 2, 64×64 nodes in a domain 128×128
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(b) Case B: ∆X = 1, 128×128 nodes in a domain 128×128

Figure 3: L1 norm as a measure for stability regarding time step.

consisting of 256×256 points, and a dimensionless grid spacing of ∆X = 2. The reason for this choice is
that K is givern by:

K =
Ds ρnd
N2 kB T

exp

(
− ∆E

kB T

)
where Ds is the surface self-diffusivity, ρ is the surface free energy per unit area, nd the density of diffusing265

atoms, N the atomic density, kB the Boltzmann constant, ∆E the activation energy and T the temperature.
We are particularly interested in high temperatures (K̄ > 1), such that diffusion is enhanced, acting on
similar scales with sputtering terms. Then, by setting T = 500 K, we choose a realistic activation energy
of ∆E = 1.25 eV (typically in the range of 1 - 2.6 eV for small clusters of atoms), and do the same for
the remaining parameters. This leads to the dimensionless K̄ = 5, and to the choice of aη = 4. Specific270
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experimental systems can be studied by adjusting each of these parameters, depending for instance on the
target material, and on the flux and energy of incoming ions. Those looking for further experimental data
to perform simulations should visit some of aforementioned references [6, 13, 4].

7.1. [Case 1] Initial pattern with ~q = q0
~1X , 2 wavelengths

We adopt an initial pattern consisting of an 1D structure with a wavenumber q0 = 2.4544 · 10−2 in the275

~1X direction (2 starting wavelengths in the system), situated inside the stable domain. Figure 4 presents
the time evolution of the L1 norm, internal iterations, and maximum height

∣∣h̄ n∣∣ for this case, with a zoom
into the initial regimes to display how the structure diminishes and rises.
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Figure 4: L1 norm rate of variation, and maximum values for h̄ n as a function of time τ , for an initial pattern with ~q = q0~1X
(inside the stable domain), ∆τ = 0.1, ∆X = ∆Y = 2, on a 256 × 256 nodes mesh. Beam angle is set at 30°.

From τ = 0 to τ = 400, it is possible to follow the nanostructuration of an 1D pattern with a wavenumber
near qc (upper panels of Fig. 5). Based on the L1 curve and on the maximum absolute height value, one280

could think that a steady state was already reached about τ = 2, 000, since h̄ n stabilized in a minimum
of -0.42, and the pattern calmed down (see the continuous and pronounced fall of L1). Nonetheless, after
τ = 2, 000, the hexagonal modes emerge, and the 1D structure destabilizes. The L1 curve rapidly ascends
to its peak and then falls down, as the structure reorganizes and stabilizes with the new hexagonal pattern.
A defectless nanohole pattern is attained for the steady state, with a minimum height frozen at -0.8, as seen285

in the lower panels of Fig. 5. The system is very sensitive to the initial wavenumber, and slight variations
of qc may lead to hexagonal patterns with remaining defects.

re

7.2. [Case 2] Initial pattern with ~q = q0
~1Y , 2 wavelengths

The initial pattern for the second case is a monomodal ~1Y surface, possessing the same number of290

wavelengths as Case 1, for the sake of comparison (q0 = 2.4544 · 10−2). This wavenumber also lies in the
linearly stable domain, so we expect a similar behavior of the dynamics during the first stage. Figure 6
contains the time evolution of the L1 norm, internal iterations, and maximum height

∣∣h̄ n∣∣ for the second
simulation. If we zoomed in the initial regimes, it would be possible to see the 1D structure diminishing in
height before the emergence of hexagonal modes.295

Case 2 does not display the formation of a 1D pattern with ~q ≈ qc~1X , as in Case 1. Between τ = 150
and 200, the monomodal ~1Y direction surface disappears, and new ripples start to proliferate in the domain.
Figure 7 shows that these ripples quickly lose their orientation towards ~1X , and about τ = 750 we already
have the formation of nanoholes. Therefore, the nanohole structure takes over the system without an
intermediate transition.300
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Figure 5: Surface height values h̄ n and their respective Fourier Transform for τ = 400 (upper panels) and τ = 14, 630, with
an initial monomodal pattern presenting ~q = qc~1X and the beam angle set at 30°. The 1D structure is destabilized due to the
emergence of the hexagonal modes.

The steady state (lower panels of Fig. 7) consists of a well ordered defectless nanohole pattern. Similarly
to Case 1, this result is also physically consistent with the sputtering phenomenon, as the height decay is
expected from the removal of surface atoms, alongside the rearrangement of the surface morphology. Besides,
nanohole formation is one of the organized patterns achieved by ion beam sputtering.

7.3. Damping tests305

The linear damping term had an essential contribution to the acquisition of the nanohole pattern, as
seen in the last section. According to the previous work of Paniconi and Elder [24], three distinct solutions
in the late time limit might be expected for the DKS equation, depending on the parameter α: periodic
large hexagonal morphology for higher values, an oscillatory or breathing hexagonal state for middle values,
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Figure 6: L1 norm rate of variation, and maximum values for h̄ n as a function of time τ , for an initial pattern with ~q = q0~1Y
(inside the stable domain), ∆τ = 0.1, ∆X = ∆Y = 2, on a 256 × 256 nodes mesh. Beam angle is set at 30°.

and a spatiotemporal chaotic state for lower values. However, since the present endeavor considers realistic310

coefficients related to the physics of sputtering, the range of α values employed by Paniconi and Elder would
not produce the same effects. Besides, opposed to Paniconi and Elder, our study deals with an anisotropic
DKS equation. Thereafter, during the first moments, linear effects lead to the selection of a well defined
ripple direction; then, once nonlinear effects take over the system, cellular structures will develop (clearly
seen on the results for α = 0.15).315

The undamped solution is shown in Fig. 8, for α = 0. The initial condition presented a wavenumber
qc = 1.7181 · 10−1 (14 wavelengths in the system). A disordered chaotic cellular structure is obtained for
late time, with large variations of cell size and shape, as displayed in Fig. 8a for τ = 11, 803. From the L1

curve (Fig. 8b), we can see that the chaotic pattern is reached within τ = 500. While a steady state isn’t
reached for the analyzed period, it’s clear that the evolution dynamics are much slower during late time.320

Figure 9 reveals the numerical solution for α = 0.05. The initial condition was the same as the previous
case (qc = 1.7181 · 10−1) . A spatiotemporal chaotic cellular structure is obtained for late time, which can
be seen in Fig. 8a for τ = 11, 750. In comparison with the undamped structure, the late time pattern for
α = 0.05 is much more organized, with a smaller variation of cell sizes and shape, where some of them
approach the critical λc width. The L1 norm evolution (Fig. 9b) shows that a strongly oscillatory state is325

reached about τ = 2, 000, where L1 starts fluctuating around L1 = 0.02. These intense dynamics differ from
the undamped case: even though the structure is more organized, it keeps changing at a constant rate for
an undefined period of time.

Both cases differ from the simulation with α = 0.15, where the damping effect is sufficient for an ordered
and quick reorganization of the structure after a L1 peak. In the α = 0.05 case, the damping is not high330

enough to allow the microstructure to reorganize itself into a perfectly ordered hexagonal state, and it keeps
chaotically oscillating around the peak L1 value. Another observation is made towards the obtained height
values: analyzing α = 0 case, the mean height of the surface falls continuously with time, while maintaining
the distance h̄dif between the minimum and maximum points around h̄dif = 6.4. However, for α = 0.05,
the mean height remains approximately constant, oscillating from -0.5 to -3.5 (h̄dif ≈ 3.0), for an undefined335

time. In comparison, for the steady state obtained with a damping α = 0.15 and ~q = q0
~1X , the maximum

and minimum height values were, respectively, -0.03 and -0.81 (h̄dif = 0.78).
The practical significance of those results is that the acquired structures might depend on the duration

of the irradiation. For a short time duration sputtering in a system with α = 0.15, we may have only ripple
formation, while hexagons shall emerge for a longer duration of the experiment. In contrast, for a system340

with α = 0 or 0.05, the final structure will depend on time, since it keeps changing with the irradiation
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Figure 7: Surface height values h̄ n and their respective Fourier Transform for τ = 750 (upper panels) and τ = 40, 000, with
an initial monomodal pattern presenting ~q = qc~1Y and the beam angle set at 30°. After the structure diminishes (while in the
stable domain), the nonlinearities lead to the emergence of hexagonal modes, quickly dominating the entire system.

duration. We note that due to an unstable initial growth, the case without damping does not present proper
physical results, since the magnitude of h grew surpassing reasonable boundaries. The curve L1 for α = 0
seems to decay in the long time, and further investigations could be made. Still, the present results reinforce
the importance of the linear damping in the modelling of sputtering.345

7.4. Anisotropy and angle of incidence

From our previous weakly nonlinear analysis, we are able to investigate the parameters involved in the
relative anisotropy of the resulting patterns. The relative anisotropy is studied by A = Ω/K̄q4

c , where qc is
the critical wavenumber obtained from our previous linear stability analysis, and Ω = 3

4 (|µ| − |ν|)q2
c . Figure

10 plots the relative anisotropy A versus θ for K̄ = 5 and aη = 4. From the plot we observe that A for350
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(a) Surface height h̄n for τ = 11, 803
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Figure 8: Numerical solution for a 2D anisotropic DKS equation - Spatiotemporal chaotic pattern, with α = 0 and θ = 30◦.
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(a) Surface height h̄n for τ = 11, 750
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Figure 9: Numerical solution for a 2D anisotropic DKS equation - Chaotic semi-organized oscillatory behavior, with α = 0.05
and θ = 30◦.

θ = 0.5236 (30◦) is approximately 1.15, which was the value used up to this moment. The following results
investigate the effect of varying the angle of incidence in the resulting pattern, motivated by this behavior
of the relative anisotropy.

One region that we are particularly interested in is near θ = 1.2, since ν̄x and ν̄y may present opposite
signs with similar absolute value. This observation implies that there will be one direction for the unstable355

modes where the nonlinear terms (ν̄x and ν̄y from Eq. 2) will compensate each other, as studied in the work
of Rost and Krug [7] (without damping). For such simulation, we set θ to 1.1549 (66.17◦), which means that
we will have the following anisotropy coefficients: ν̄x = 0.0658 and ν̄y = −0.0659. The damping coefficient
is set to α = 0.1.

Figure 11 shows that the nonlinearities compensate each other when the system remains aligned with the360

~1x direction, even for unstable modes. The nanostructure obtained for τ = 180 is still irregular in terms of
the ripple behavior, but the direction of preference is clear. There are approximately 23 wavelengths in the
domain, which is less than the critical number of wavelengths from the linear stability analysis. In this case,
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Figure 10: Relative anisotropy A versus θ for K̄ = 5 and aη = 4 .

we did not obtain a stationary structure, since the irregular ripple morphology keeps evolving, although the
pattern’s preferred direction remains the same.365
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Figure 11: Simulation results for a system 512 × 512 with an angle θ = 66.17◦. The nonlinearities “cancel” each other and a
well defined direction arises from the unstable mode. This is made clear by the selection of the ~1x direction for τ = 180.

8. Conclusions

In the present work we have developed a finite-difference time splitting scheme to solve an anisotropic
damped Kuramoto-Sivashinsky equation, which comes from the continuum theory and is an option to
describe a surface eroded by ion bombardment. We dealt with realistic coefficients, based on physical values
typically found in the literature. The dimensionless analysis was performed for a high temperature scenario370

(T = 500K).
The MMS was employed for code verification, and a second-order convergence was detected for coarser

meshes comparison, while results between first and second-order convergence came up for more refined
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meshes, suggesting a possible issue with the manufactured solution stability. Regarding the scheme’s sta-
bility, the tests revealed that for ∆τ ≤ 2.0, the numerical scheme was sufficiently stable with a grid spacing375

∆X = 1.0.
Spatiotemporal chaotic structures appeared for the undamped case, whose dynamics fell continuously for

the long time. A chaotic oscillatory pattern rose from the simulation with α = 0.05, reaching a better ordered
structure than the one for the undamped result, while maintaining a pattern under oscillatory evolution after
the emergence of the hexagonal modes. Defectless hexagonal periodic structures were obtained for higher380

values of the damping coefficient, with an angle of incidence θ = 30◦. Although its physical origin has been
questioned in the literature [25], the damping term is an essential ingredient of the present model to obtain
the desired nanohole pattern.

Regarding the effect of preexisting patterns over the steady state in a system with higher damping
coefficient (α ≥ 0.1), no appreciable difference was observed in the final morphology born from random or385

monomodal initial patterns. For all considered initial structures, we have arrived in the aforementioned
defectless nanohole pattern. However, the evolution of ~1X monomodal patterns was significantly different
when compared to the others, since the former was the only scenario where the nanostructuration of a 1D
pattern with a wavenumber near qc was observed before the emergence of hexagonal modes.

Based on the previous work of Rost and Krug, we investigated a case where the nonlinearities compensate390

each other. In their model, there was a subtle balance between the anisotropy of both the linear terms
and nonlinear terms, leading to nonintuitive results, suggesting that a numerical analysis is essential. In
this paper, the nonlinear compensation was achieved using θ = 66.17◦, and an irregular oscillatory ripple
structure with a clear orientation in the ~1X direction was obtained.

In summary, the studied model equation leads to ripple morphologies and nanohole patterns, such that395

the prevailing structure is sensitive to the anisotropy of the system, while unaffected by changes in the
initial pattern. The hexagonal structures are equally attained through experiments, and the present results
reinforce the role of the irradiation duration for the acquired surface morphology.
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